Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A significant fraction of 21-nucleotide small RNA originates from phased degradation of resistance genes in several perennial species.

Identifieur interne : 002814 ( Main/Exploration ); précédent : 002813; suivant : 002815

A significant fraction of 21-nucleotide small RNA originates from phased degradation of resistance genes in several perennial species.

Auteurs : Thomas K Llman [Suède] ; Jun Chen ; Niclas Gyllenstrand ; Ulf Lagercrantz

Source :

RBID : pubmed:23580593

Descripteurs français

English descriptors

Abstract

Small RNAs (sRNAs), including microRNA (miRNA) and short-interfering RNA (siRNA), are important in the regulation of diverse biological processes. Comparative studies of sRNAs from plants have mainly focused on miRNA, even though they constitute a mere fraction of the total sRNA diversity. In this study, we report results from an in-depth analysis of the sRNA population from the conifer spruce (Picea abies) and compared the results with those of a range of plant species. The vast majority of sRNA sequences in spruce can be assigned to 21-nucleotide-long siRNA sequences, of which a large fraction originate from the degradation of transcribed sequences related to nucleotide-binding site-leucine-rich repeat-type resistance genes. Over 90% of all genes predicted to contain either a Toll/interleukin-1 receptor or nucleotide-binding site domain showed evidence of siRNA degradation. The data further suggest that this phased degradation of resistance-related genes is initiated from miRNA-guided cleavage, often by an abundant 22-nucleotide miRNA. Comparative analysis over a range of plant species revealed a huge variation in the abundance of this phenomenon. The process seemed to be virtually absent in several species, including Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and nonvascular plants, while particularly high frequencies were observed in spruce, grape (Vitis vinifera), and poplar (Populus trichocarpa). This divergent pattern might reflect a mechanism to limit runaway transcription of these genes in species with rapidly expanding nucleotide-binding site-leucine-rich repeat gene families. Alternatively, it might reflect variation in a counter-counter defense mechanism between plant species.

DOI: 10.1104/pp.113.214643
PubMed: 23580593
PubMed Central: PMC3668067


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A significant fraction of 21-nucleotide small RNA originates from phased degradation of resistance genes in several perennial species.</title>
<author>
<name sortKey="K Llman, Thomas" sort="K Llman, Thomas" uniqKey="K Llman T" first="Thomas" last="K Llman">Thomas K Llman</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, 752 36 Uppsala, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, 752 36 Uppsala</wicri:regionArea>
<orgName type="university">Université d'Uppsala</orgName>
<placeName>
<settlement type="city">Uppsala</settlement>
<region nuts="1">Svealand</region>
<region nuts="1">East Middle Sweden</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chen, Jun" sort="Chen, Jun" uniqKey="Chen J" first="Jun" last="Chen">Jun Chen</name>
</author>
<author>
<name sortKey="Gyllenstrand, Niclas" sort="Gyllenstrand, Niclas" uniqKey="Gyllenstrand N" first="Niclas" last="Gyllenstrand">Niclas Gyllenstrand</name>
</author>
<author>
<name sortKey="Lagercrantz, Ulf" sort="Lagercrantz, Ulf" uniqKey="Lagercrantz U" first="Ulf" last="Lagercrantz">Ulf Lagercrantz</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23580593</idno>
<idno type="pmid">23580593</idno>
<idno type="doi">10.1104/pp.113.214643</idno>
<idno type="pmc">PMC3668067</idno>
<idno type="wicri:Area/Main/Corpus">002636</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002636</idno>
<idno type="wicri:Area/Main/Curation">002636</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002636</idno>
<idno type="wicri:Area/Main/Exploration">002636</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A significant fraction of 21-nucleotide small RNA originates from phased degradation of resistance genes in several perennial species.</title>
<author>
<name sortKey="K Llman, Thomas" sort="K Llman, Thomas" uniqKey="K Llman T" first="Thomas" last="K Llman">Thomas K Llman</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, 752 36 Uppsala, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, 752 36 Uppsala</wicri:regionArea>
<orgName type="university">Université d'Uppsala</orgName>
<placeName>
<settlement type="city">Uppsala</settlement>
<region nuts="1">Svealand</region>
<region nuts="1">East Middle Sweden</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chen, Jun" sort="Chen, Jun" uniqKey="Chen J" first="Jun" last="Chen">Jun Chen</name>
</author>
<author>
<name sortKey="Gyllenstrand, Niclas" sort="Gyllenstrand, Niclas" uniqKey="Gyllenstrand N" first="Niclas" last="Gyllenstrand">Niclas Gyllenstrand</name>
</author>
<author>
<name sortKey="Lagercrantz, Ulf" sort="Lagercrantz, Ulf" uniqKey="Lagercrantz U" first="Ulf" last="Lagercrantz">Ulf Lagercrantz</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (genetics)</term>
<term>Binding Sites (MeSH)</term>
<term>Expressed Sequence Tags (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>MicroRNAs (genetics)</term>
<term>MicroRNAs (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Oryza (genetics)</term>
<term>Picea (genetics)</term>
<term>Plant Proteins (genetics)</term>
<term>Populus (genetics)</term>
<term>RNA, Plant (MeSH)</term>
<term>RNA, Small Interfering (genetics)</term>
<term>RNA, Small Interfering (metabolism)</term>
<term>Receptors, Interleukin-1 (genetics)</term>
<term>Vitis (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN des plantes (MeSH)</term>
<term>Arabidopsis (génétique)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Gènes de plante (MeSH)</term>
<term>Génome végétal (MeSH)</term>
<term>Oryza (génétique)</term>
<term>Petit ARN interférent (génétique)</term>
<term>Petit ARN interférent (métabolisme)</term>
<term>Picea (génétique)</term>
<term>Populus (génétique)</term>
<term>Protéines végétales (génétique)</term>
<term>Récepteurs à l'interleukine-1 (génétique)</term>
<term>Sites de fixation (MeSH)</term>
<term>Vitis (génétique)</term>
<term>microARN (génétique)</term>
<term>microARN (métabolisme)</term>
<term>Étiquettes de séquences exprimées (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>MicroRNAs</term>
<term>Plant Proteins</term>
<term>RNA, Small Interfering</term>
<term>Receptors, Interleukin-1</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Oryza</term>
<term>Picea</term>
<term>Populus</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Oryza</term>
<term>Petit ARN interférent</term>
<term>Picea</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Récepteurs à l'interleukine-1</term>
<term>Vitis</term>
<term>microARN</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>MicroRNAs</term>
<term>RNA, Small Interfering</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Petit ARN interférent</term>
<term>microARN</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Binding Sites</term>
<term>Expressed Sequence Tags</term>
<term>Genes, Plant</term>
<term>Genome, Plant</term>
<term>Molecular Sequence Data</term>
<term>RNA, Plant</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ARN des plantes</term>
<term>Données de séquences moléculaires</term>
<term>Gènes de plante</term>
<term>Génome végétal</term>
<term>Sites de fixation</term>
<term>Étiquettes de séquences exprimées</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Small RNAs (sRNAs), including microRNA (miRNA) and short-interfering RNA (siRNA), are important in the regulation of diverse biological processes. Comparative studies of sRNAs from plants have mainly focused on miRNA, even though they constitute a mere fraction of the total sRNA diversity. In this study, we report results from an in-depth analysis of the sRNA population from the conifer spruce (Picea abies) and compared the results with those of a range of plant species. The vast majority of sRNA sequences in spruce can be assigned to 21-nucleotide-long siRNA sequences, of which a large fraction originate from the degradation of transcribed sequences related to nucleotide-binding site-leucine-rich repeat-type resistance genes. Over 90% of all genes predicted to contain either a Toll/interleukin-1 receptor or nucleotide-binding site domain showed evidence of siRNA degradation. The data further suggest that this phased degradation of resistance-related genes is initiated from miRNA-guided cleavage, often by an abundant 22-nucleotide miRNA. Comparative analysis over a range of plant species revealed a huge variation in the abundance of this phenomenon. The process seemed to be virtually absent in several species, including Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and nonvascular plants, while particularly high frequencies were observed in spruce, grape (Vitis vinifera), and poplar (Populus trichocarpa). This divergent pattern might reflect a mechanism to limit runaway transcription of these genes in species with rapidly expanding nucleotide-binding site-leucine-rich repeat gene families. Alternatively, it might reflect variation in a counter-counter defense mechanism between plant species.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23580593</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>01</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>162</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2013</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>A significant fraction of 21-nucleotide small RNA originates from phased degradation of resistance genes in several perennial species.</ArticleTitle>
<Pagination>
<MedlinePgn>741-54</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.113.214643</ELocationID>
<Abstract>
<AbstractText>Small RNAs (sRNAs), including microRNA (miRNA) and short-interfering RNA (siRNA), are important in the regulation of diverse biological processes. Comparative studies of sRNAs from plants have mainly focused on miRNA, even though they constitute a mere fraction of the total sRNA diversity. In this study, we report results from an in-depth analysis of the sRNA population from the conifer spruce (Picea abies) and compared the results with those of a range of plant species. The vast majority of sRNA sequences in spruce can be assigned to 21-nucleotide-long siRNA sequences, of which a large fraction originate from the degradation of transcribed sequences related to nucleotide-binding site-leucine-rich repeat-type resistance genes. Over 90% of all genes predicted to contain either a Toll/interleukin-1 receptor or nucleotide-binding site domain showed evidence of siRNA degradation. The data further suggest that this phased degradation of resistance-related genes is initiated from miRNA-guided cleavage, often by an abundant 22-nucleotide miRNA. Comparative analysis over a range of plant species revealed a huge variation in the abundance of this phenomenon. The process seemed to be virtually absent in several species, including Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and nonvascular plants, while particularly high frequencies were observed in spruce, grape (Vitis vinifera), and poplar (Populus trichocarpa). This divergent pattern might reflect a mechanism to limit runaway transcription of these genes in species with rapidly expanding nucleotide-binding site-leucine-rich repeat gene families. Alternatively, it might reflect variation in a counter-counter defense mechanism between plant species.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Källman</LastName>
<ForeName>Thomas</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, 752 36 Uppsala, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Jun</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gyllenstrand</LastName>
<ForeName>Niclas</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lagercrantz</LastName>
<ForeName>Ulf</ForeName>
<Initials>U</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>ACN49932</AccessionNumber>
<AccessionNumber>TC161203</AccessionNumber>
</AccessionNumberList>
</DataBank>
<DataBank>
<DataBankName>GEO</DataBankName>
<AccessionNumberList>
<AccessionNumber>GSE28755</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>04</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D035683">MicroRNAs</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018749">RNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D034741">RNA, Small Interfering</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017472">Receptors, Interleukin-1</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020224" MajorTopicYN="N">Expressed Sequence Tags</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035683" MajorTopicYN="N">MicroRNAs</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028222" MajorTopicYN="N">Picea</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018749" MajorTopicYN="Y">RNA, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034741" MajorTopicYN="N">RNA, Small Interfering</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017472" MajorTopicYN="N">Receptors, Interleukin-1</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027843" MajorTopicYN="N">Vitis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>4</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>4</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>1</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23580593</ArticleId>
<ArticleId IdType="pii">pp.113.214643</ArticleId>
<ArticleId IdType="doi">10.1104/pp.113.214643</ArticleId>
<ArticleId IdType="pmc">PMC3668067</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2010 Feb 1;26(3):401-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19965881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22127870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2009;60:485-510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19519217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Apr;18(4):571-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18323537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2009 Dec;183(4):1227-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19797048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Feb;1819(2):137-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21605713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009;10:620</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20021695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012;13:589</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23122049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2008 Aug;14(8):1508-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18566193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2011 Aug;12(8):483-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21779025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2009 Nov;15(11):1965-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19776157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 May 30;320(5880):1185-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18483398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Feb 20;136(4):669-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19239888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2010 May;24(9):853-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20439425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2011 May;233(5):1041-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21279649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2011 Dec 1;25(23):2540-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22156213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2005 Oct 31;579(26):5879-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16162339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2012;12:146</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22894611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Aug 23;110(4):513-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12202040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Apr 1;20(7):759-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16600909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009;9:106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19656416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2008 Sep;280(3):187-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18563445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2009;25:21-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19575669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2004 May;2(5):E104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15024409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jul;39(Web Server issue):W155-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21622958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Bioinformatics. 2010 Dec;Chapter 11:Unit 11.7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21154709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:420</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20609256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Feb;23(2):431-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21317375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Mar;193(4):1049-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22212278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 May 15;27(10):1368-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21441575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2012 Jun 5;367(1595):1570-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22527400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Aug;16(8):2001-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15258262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2007 Mar;5(3):e57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17298187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2008 Apr;26(4):407-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18392026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(1):e16214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21283709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Sep;157(1):14-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21730200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Sep;187(4):1154-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20561211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Res Notes. 2009 Sep 28;2:197</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19785756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Biotechnol. 2009;2009:952304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19859540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Sep;28(9):2429-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21478371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D136-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18953034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011;12:553</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22077969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Dec 15;20(24):3407-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17182867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Apr 4;133(1):116-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18342361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2007 Nov;8(11):884-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17943195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1790-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22307647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jan;39(Database issue):D152-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21037258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Nov 3;127(3):565-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17081978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Jul;13(7):368-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18501663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Mar;24(3):859-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22408077</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
<region>
<li>East Middle Sweden</li>
<li>Svealand</li>
</region>
<settlement>
<li>Uppsala</li>
</settlement>
<orgName>
<li>Université d'Uppsala</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Chen, Jun" sort="Chen, Jun" uniqKey="Chen J" first="Jun" last="Chen">Jun Chen</name>
<name sortKey="Gyllenstrand, Niclas" sort="Gyllenstrand, Niclas" uniqKey="Gyllenstrand N" first="Niclas" last="Gyllenstrand">Niclas Gyllenstrand</name>
<name sortKey="Lagercrantz, Ulf" sort="Lagercrantz, Ulf" uniqKey="Lagercrantz U" first="Ulf" last="Lagercrantz">Ulf Lagercrantz</name>
</noCountry>
<country name="Suède">
<region name="Svealand">
<name sortKey="K Llman, Thomas" sort="K Llman, Thomas" uniqKey="K Llman T" first="Thomas" last="K Llman">Thomas K Llman</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002814 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002814 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23580593
   |texte=   A significant fraction of 21-nucleotide small RNA originates from phased degradation of resistance genes in several perennial species.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23580593" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020